

COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL & ARCHITECTURAL

CVEN 214: STRENGTH OF MATERIALS

Chapter 1: Introduction & basic concepts

Dr Mohammed Elshafie

Spring, 2023

Introduction – Concept of Stress

Rectangular/Cartesian Components Method

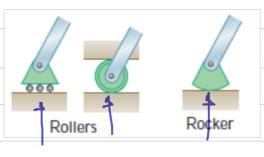
$$A_{\chi} = A Jin \Theta$$

$$\overrightarrow{A} = Ax\overrightarrow{c} + Ay\overrightarrow{J}$$

Equilibrium of Rigid Bodies

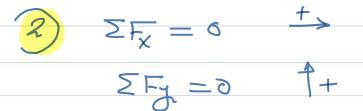
$$\sum F_{\chi} = 0 \qquad \sum M = 0$$

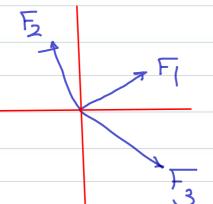
Support Reactives: -



1-Regeth

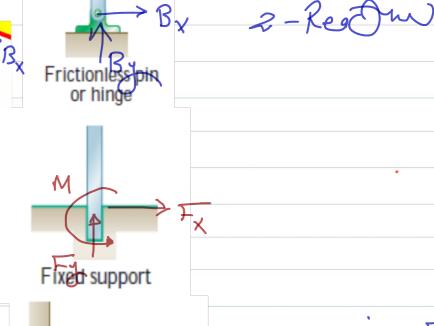
Equilibrium of a Particle

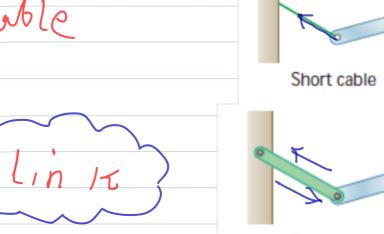




moment of the force

$$M = \sum_{X} F * dI \qquad CCW \qquad F$$





Determine the resultant internal loadings acting on the cross section at C of the machine shaft shown in Fig. 1–5a. The shaft is supported by bearings at A and B, which exert only vertical forces on the shaft.

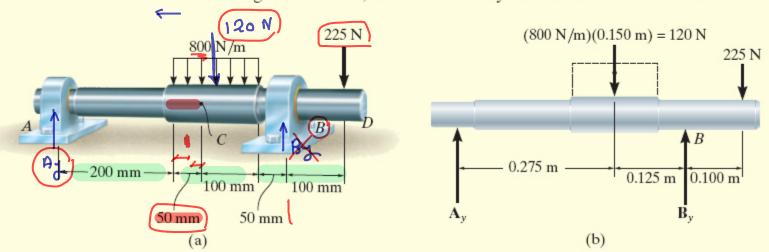


Fig. 1-5

SOLUTION

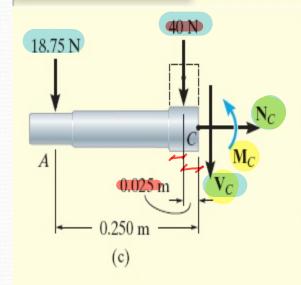
We will solve this problem using segment AC of the shaft.

Support Reactions. A free-body diagram of the entire shaft is shown in Fig. 1–5b. Since segment AC is to be considered, only the reaction at A has to be determined. Why?

$$(+\Sigma M_B = 0; -A_y(0.400 \text{ m}) + 120 \text{ N}(0.125 \text{ m}) - 225 \text{ N}(0.100 \text{ m}) = 0$$

$$A_y = -18.75 \text{ N}$$

EXAMPLE 1.2 (Continued)



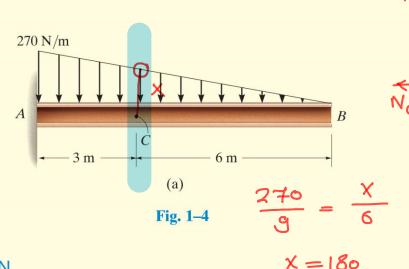
The negative sign for A_y indicates that A_y acts in the *opposite sense* to that shown on the free-body diagram.

Free-Body Diagram. Passing an imaginary section perpendicular to the axis of the shaft through C yields the free-body diagram of segment AC shown in Fig. 1–5c.

Equations of Equilibrium.

NOTE: The negative signs for V_C and M_C indicate they act in the opposite directions on the free-body diagram. As an exercise, calculate the reaction at B and try to obtain the same results using segment CBD of the shaft.

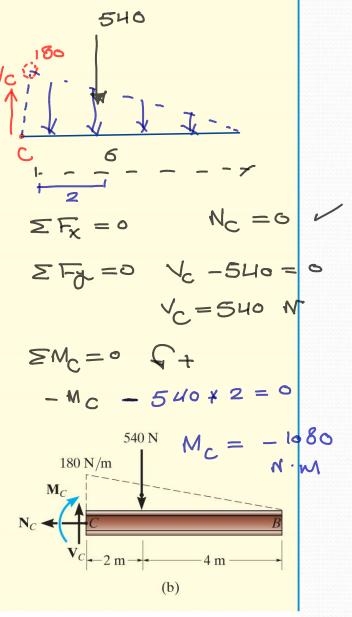
Determine the resultant internal loadings acting on the cross section at C of the cantilevered beam shown in Fig. 1–4a.



SOLUTION

Support Reactions. The support reactions at A do not have to be determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is shown in Fig. 1–4b. It is important to keep the distributed loading on the segment until *after* the section is made. Only then should this loading be replaced by a single resultant force. Notice that the intensity of the distributed loading at C is found by proportion, i.e., from Fig. 1–4a, w/6 m = (270 N/m)/9 m, w = 180 N/m. The magnitude of the resultant of the distributed load is equal to the area under the loading curve (triangle) and acts through the centroid of this area. Thus, $F = \frac{1}{2}(180 \text{ N/m})(6 \text{ m}) = 540 \text{ N}$, which acts $\frac{1}{3}(6 \text{ m}) = 2 \text{ m}$ from C as shown in Fig. 1–4b.

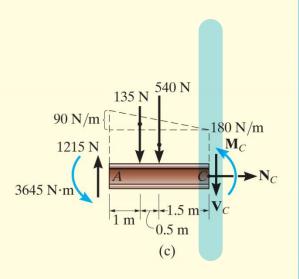


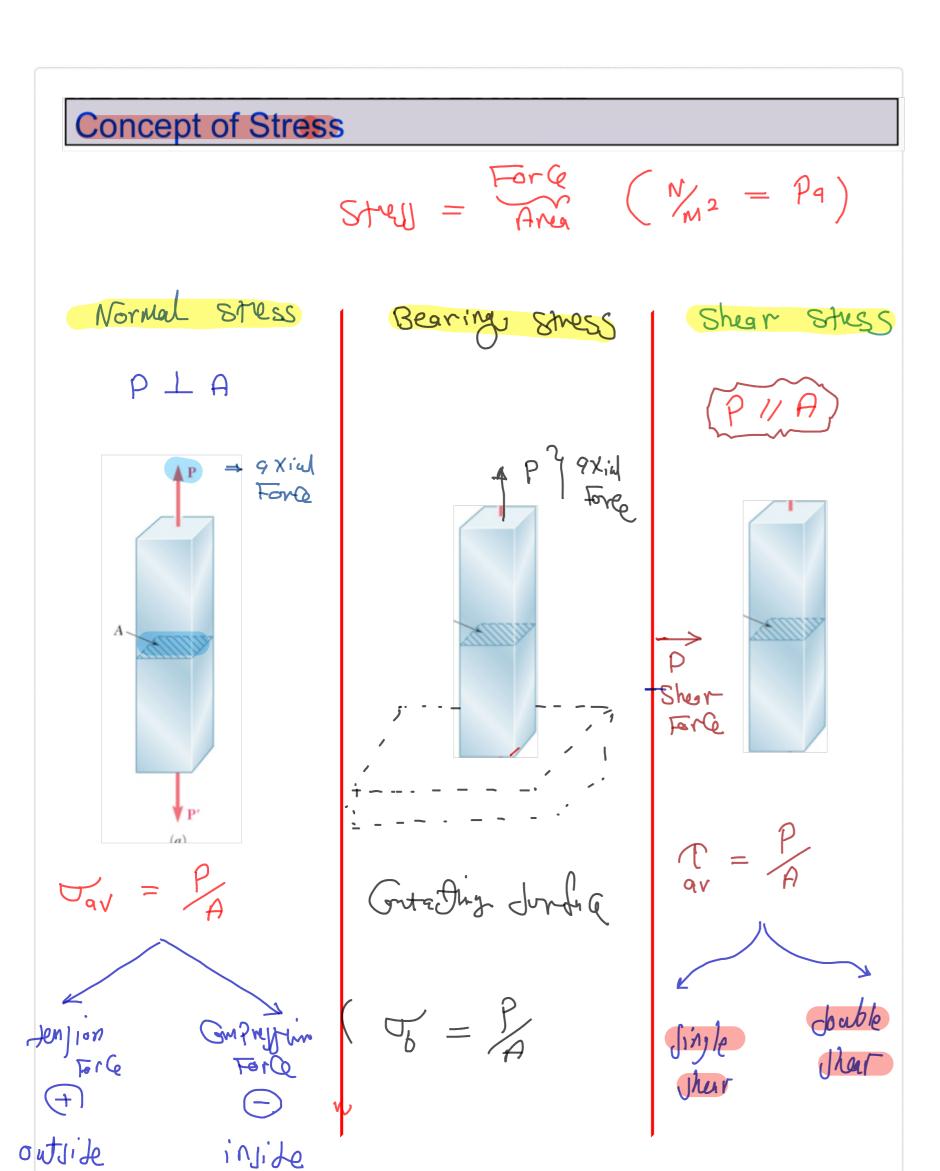
EXAMPLE 1.1 CONTINUED

Equations of Equilibrium. Applying the equations of equilibrium we have

$$\pm \sum F_x = 0;$$
 $-N_C = 0$ $N_C = 0;$ $N_C = 540 \text{ N} = 0$ $N_C = 540 \text{ N}$ $N_C = 540 \text{ N}$ $N_C = 0$ $N_C = 0$

NOTE: The negative sign indicates that \mathbf{M}_C acts in the opposite direction to that shown on the free-body diagram. Try solving this problem using segment AC, by first obtaining the support reactions at A, which are given in Fig. 1–4c.





Shearing Stress Examples

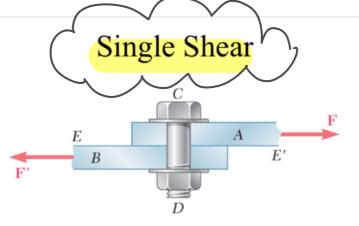
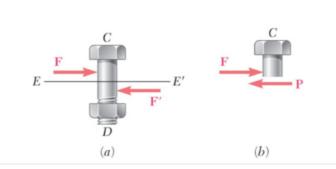


Fig. 1.16 Bolt subject to single shear.



Double Shear

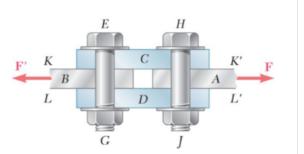
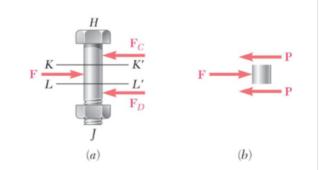
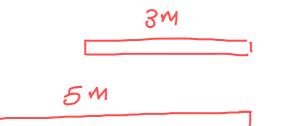
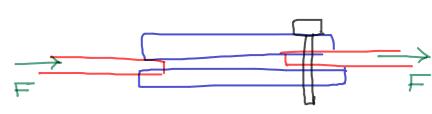


Fig. 1.18 Bolt subject to double shear.

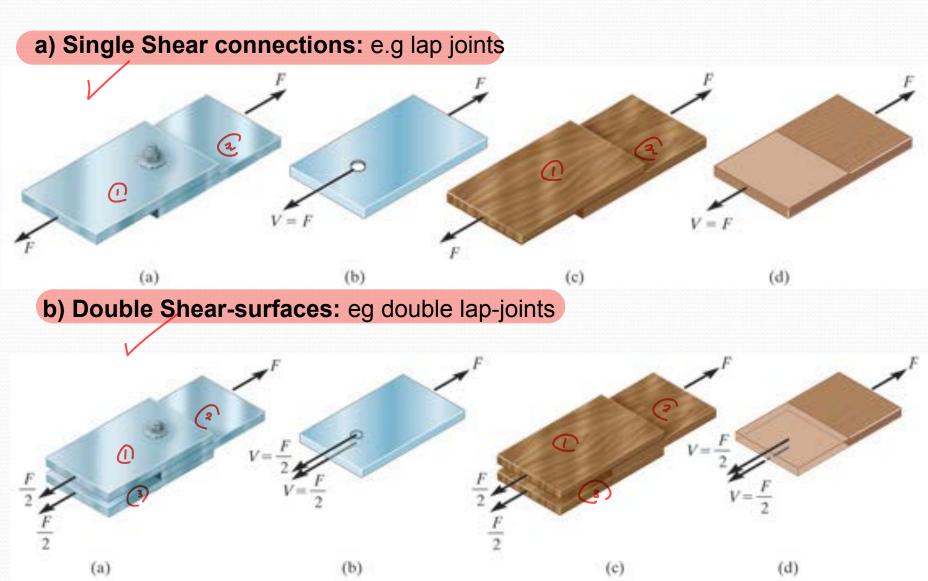




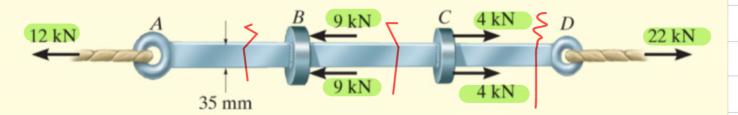


$$\mathcal{T}_{aV} = 2 A_{bol} + 4 A$$

Two Different types of shear



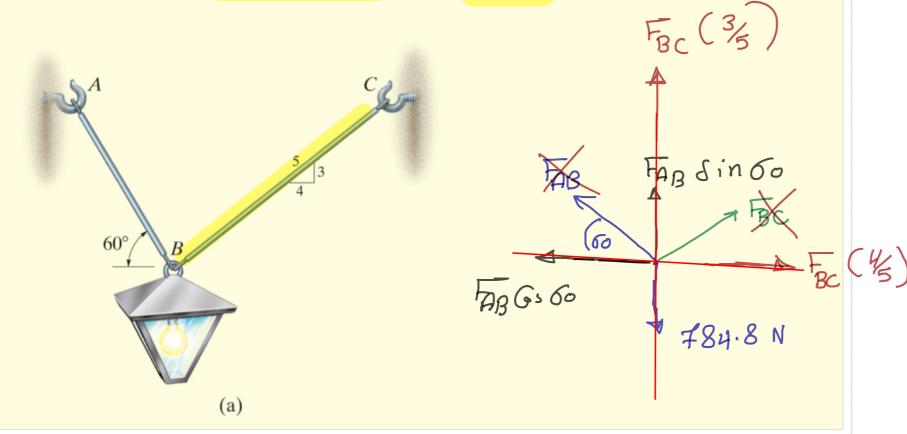
The bar in Fig. 1–15*a* has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum average normal stress in the bar when it is subjected to the loading shown.



$$\frac{P_{M_1 X}}{A} = \frac{P_{BC}}{A}$$

$$= 85 \cdot 1 \text{ MPq}$$

The 80-kg lamp is supported by two rods AB and BC as shown in Fig. 1–16a. If AB has a diameter of 10 mm and BC has a diameter of 8 mm, determine the average normal stress in each rod.



$$W = Mg = 80 + 9.81 = 784.8 N$$

$$\sum \overline{\xi} = 0 \xrightarrow{+}$$

$$\frac{4}{5} F_{BC} - F_{AB} G = 0 \Rightarrow 0$$

$$\sum \overline{F}_{BC} = 0 \xrightarrow{+} +$$

$$\frac{3}{5} F_{BC} + F_{AB} G = 0 \Rightarrow 0$$

$$= 784.8 \Rightarrow 2$$

By Challer

FBC = 395.2 N

FBB = 632.4 N

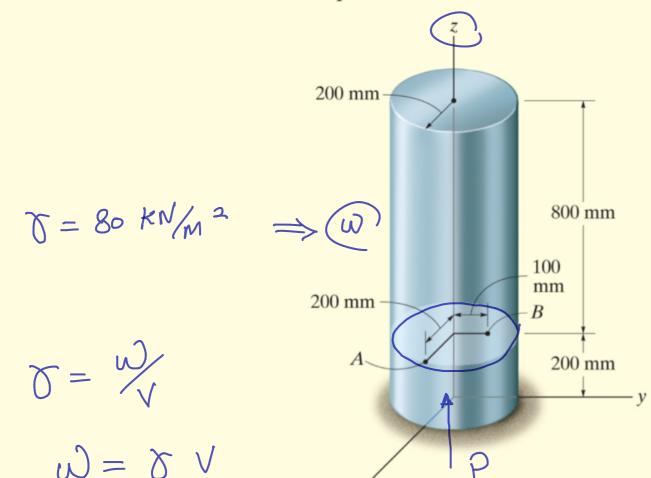
BC =
$$\frac{78C}{PBC}$$

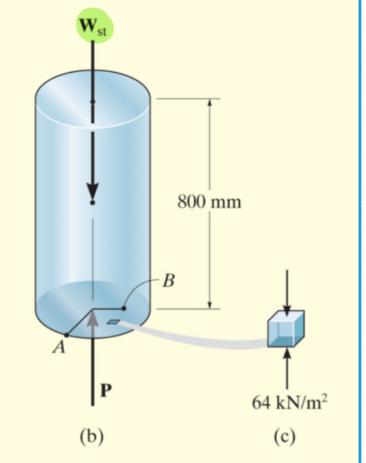
= $\frac{395.2}{V_4(8_{120})^2} = f.86 * 10^6 Pa$

BC = $\frac{786}{PBA} = \frac{632.4}{V_4(100)^2}$

= 8.05 MPa

The casting shown in Fig. 1–17a is made of steel having a specific weight of 80 kN/m³. Determine the average compressive stress acting at points A and B.

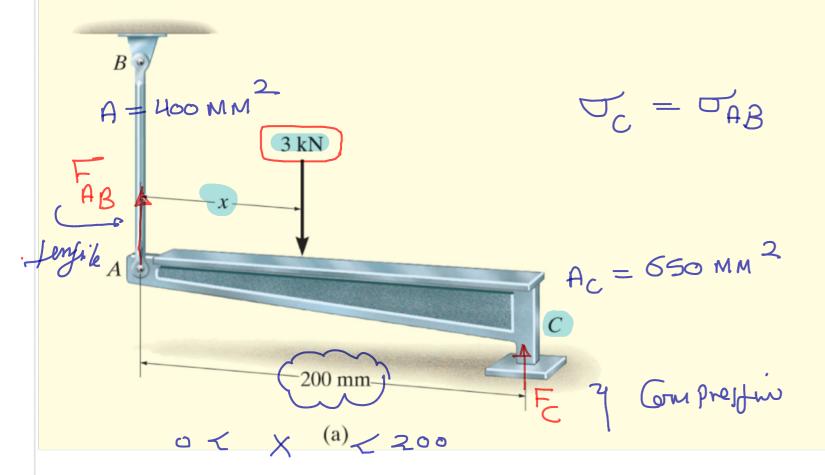




$$A = \overline{11} r^{2}$$

$$= \overline{11} (0-2)^{2}$$

Member AC shown in Fig. 1–18a is subjected to a vertical force of 3 kN. Determine the position x of this force so that the average compressive stress at the smooth support C is equal to the average tensile stress in the tie rod AB. The rod has a cross-sectional area of 400 mm² and the contact area at C is 650 mm².



Slatic
$$\Sigma F_{\chi} = 0 \qquad \uparrow +$$

$$F_{AB} + F_{C} - 3000 = 0 \qquad \uparrow$$

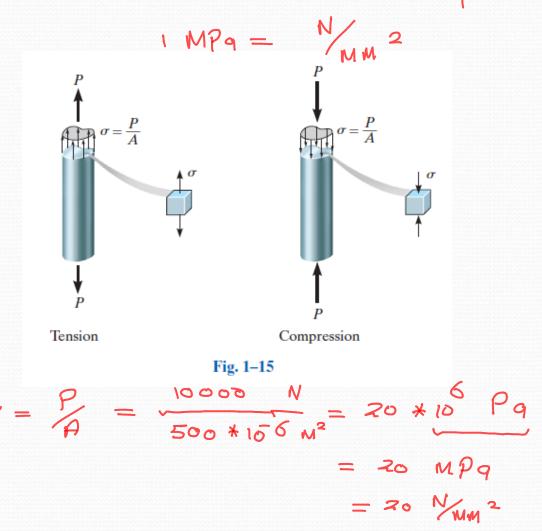
$$\Sigma M_{A} = 0 \qquad \uparrow +$$

Questions

1) What is the normal stress in the bar if P=10 kN

and 500mm²?

- a) 0.02 kPa
- **b)** 20 Pa
- c) 20 kPa
- d) 200 N/mm²
- e) 20 MPa

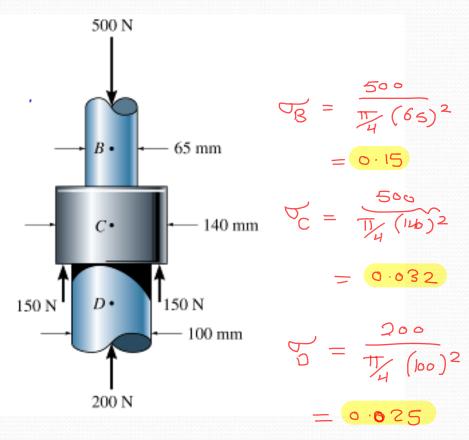


2) The thrust bearing is subjected to the loads as shown. Determine the order of average normal stress developed on cross section through **BC** and **D**.

a)
$$C > B > D$$

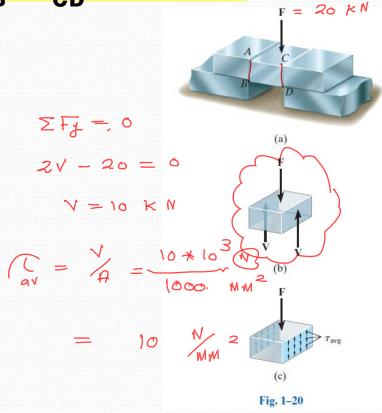
b)
$$C > D > B$$

c)
$$B > C > D$$
 $B > C > D$



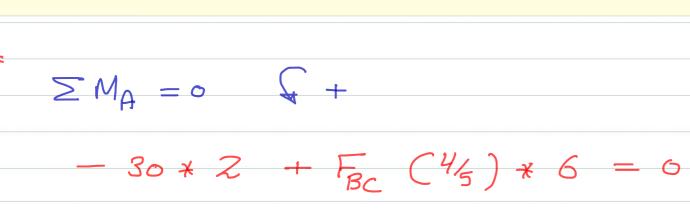
What is the average shear stress in the internal vertical surface AB (or CD), if F=20kN, and A_{AB}=A_{CD}=1000mm²?

- b) 10 N/mm²
- c) 10 kPa
- d) 200 kN/m²
- e) 20 MPa



Determine the average shear stress in the 20-mm-diameter pin at A and the 30-mm-diameter pin at B that support the beam in Fig. 1–21a.

SOLUTION



$$+ \sum_{X} = 0 \qquad + \qquad \qquad A_{X} = -7.5 \text{ kN}$$

$$A_{X} + 12.5 (3/5) = 0 \qquad \times$$

FBC (4/5) 5

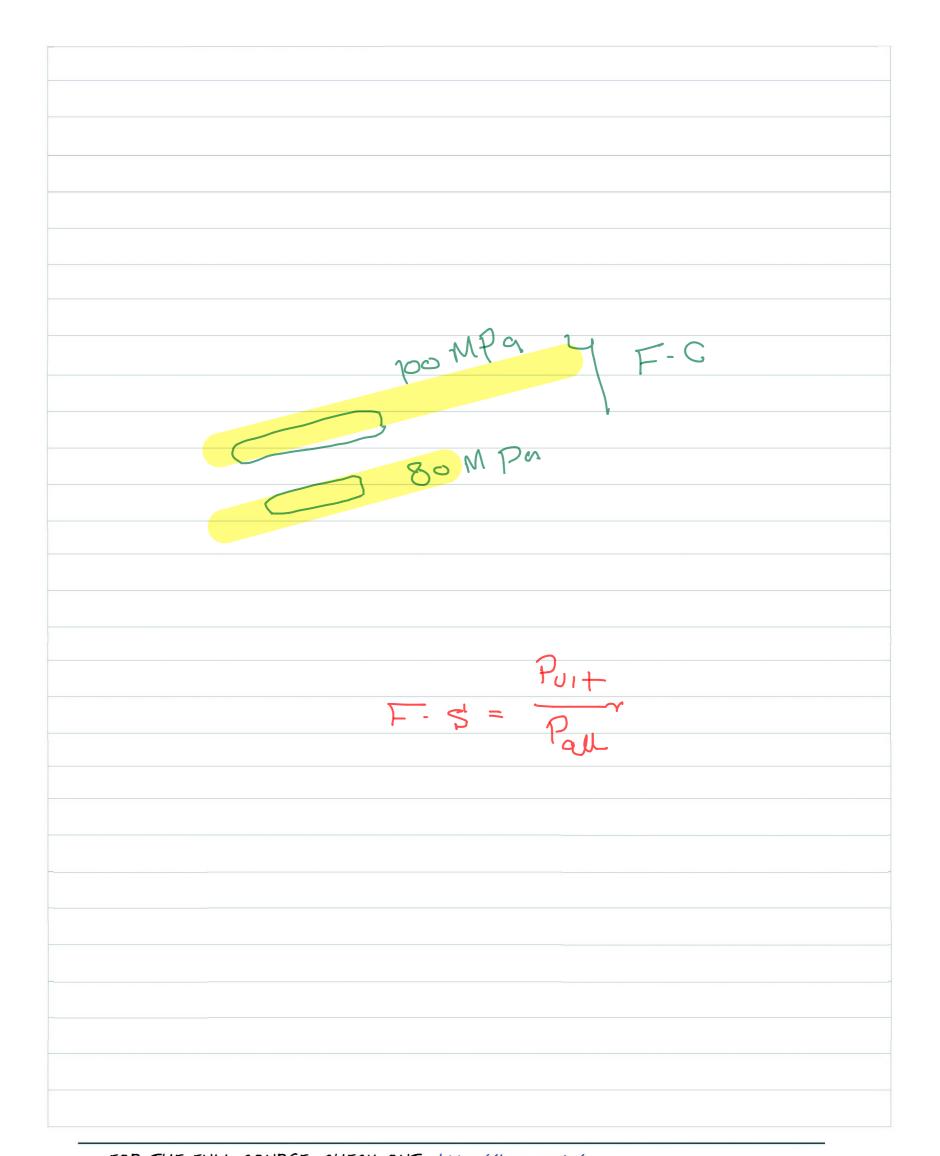
30 kN

$$V_A = F_A = \frac{21.36}{2} = 10.68 \text{ KN}$$

$$\left(\begin{array}{c} \left(\begin{array}{c} 1 \\ A \end{array}\right) = \begin{array}{c} 10.68 + 10^{3} \\ \hline \left(\begin{array}{c} 1 \\ 4 \end{array}\right) = 34 \text{ MPg}$$

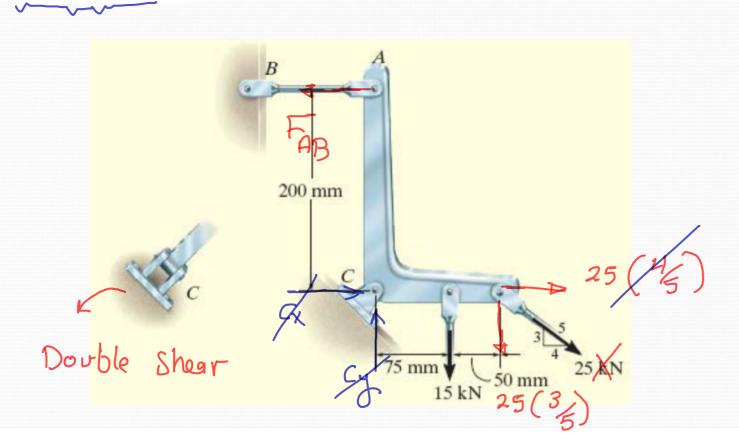
$$(T_B)_{qV} = V_B = \frac{12.5 \times 10^3}{T_H (0.03)^2} = 17.7 \text{ MPq}$$

Factor of Safety



Example 1.11

The control arm is subjected to the loading. Determine to the nearest 5 mm the required diameter of the steel pin at C if the allowable shear stress for the steel is $\tau_{allowable} = 55 \ \mathrm{MPa}$. Note in the figure that the pin is subjected to double shear.



$$\overline{AB} * 0.2 - 15 * 0.075 - 25 (3/5) * 0.125 = 0$$

$$\overline{AB} = 15 KN$$

$$\Sigma F_{\chi} = 0$$
 ± 6
-15 + C_{χ} + 25 (%) = 0

$$\sum F_{y} = 0 + C$$

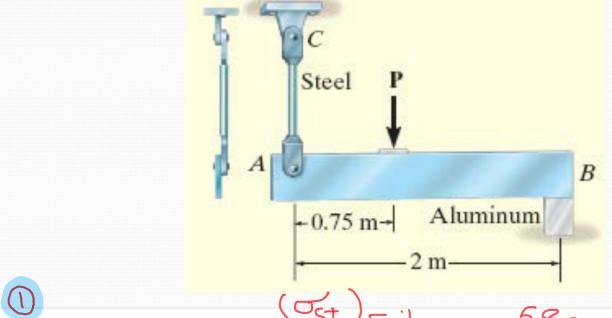
$$\sum F_{y} = 0 + C$$

$$\sum F_{y} = 0 + C$$

$$\sum F_{y} = 30 +$$

r = 10 MM

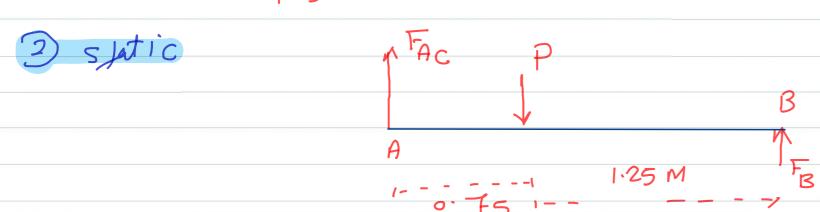
The rigid bar AB supported by a steel rod AC having a diameter of 20 mm and an aluminum block having a cross sectional area of 1800 mm^2 . The 18-mm-diameter pins at A and C are subjected to $single\ shear$. If the failure stress for the steel and aluminum is $(\sigma_{st})_{fail} = 680 \text{ MPa}$ & $(\sigma_{al})_{fail} = 70 \text{ MPa}$ respectively, and the failure shear stress for each pin is $\tau_{fail} = 900 \text{ MPa}$, determine the largest load P that can be applied to the bar. Apply a factor of safety of F.S. = 2.



$$\left(\frac{\nabla}{ST}\right)_{\text{SL}} = \frac{(ST)_{\text{Fail}}}{\text{F-S}} = \frac{680}{2} = 340 \text{ MPg}$$

$$(a_{L})_{aLL} = \frac{(a_{L})_{Fail}}{(a_{L})_{aLL}} = \frac{70}{2} = 35 \text{ MP } 9$$

$$\frac{f_{ail}}{F \cdot s} = \frac{g_{00}}{2} = 450 \text{ MPg}$$



 $\Sigma M_{R} = 0$ PX1-25 - FAC +2 = 0 $P = 1.6 F_{Ar} \Rightarrow (1)$ $\leq M_{\Lambda} = 0$ -P*0.75 + FR*2 - 0 P = 2.67 FR FAC = (St) all AC = 340 * 106 * TI (0.01) P = 1.6 × 106-8 = 171 For Block B $F_{B} = (51)_{all} + A_{B} = 35 + 10^{6} + 1800 + 10^{6}$ P = 2.67 + 63 = 168 KM

$$V = F_{AC} = T_{AC} = T_{Volt}$$

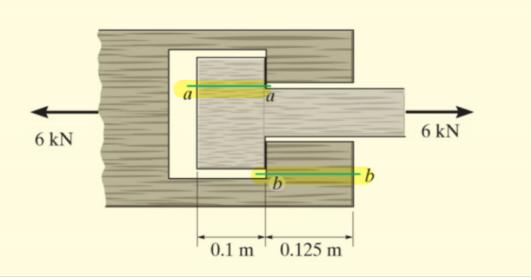
$$= 450 \times 10^{6} \times T_{C} (0.009)^{2}$$

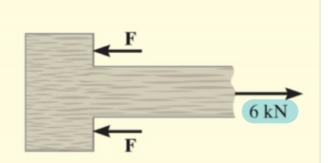
$$= 114.5$$

$$P = 168 \times N$$

lec (4) Finished

If the wood joint in Fig. 1–22a has a width of 150 mm, determine the average shear stress developed along shear planes a–a and b–b. For each plane, represent the state of stress on an element of the material.





$$\sum F_{x} = 0$$
 $\xrightarrow{+}$

$$\sum \overline{x} = 0$$

Sethi b-b

$$3 - \sqrt{b} = 0$$

$$C_b = \frac{V_b}{A_b} = \frac{3 * 10^3}{0.125 * 0.15}$$