# Force 3 **VECTORS** X-9x' Ex. Fore, velocity Mass, Volume Vectors are equal when they have the same magnitude and same direction > Vectors can be simply added or subtracted, if they have the same direction A+B=6 13 = 5





The screw eye in the figure at the left is subjected to two forces  $\vec{F}_1$  and  $\vec{F}_2$ .

Determine the magnitude and direction of the resultant force.







$$\phi = 180 - 65 = 115$$



### Example 2:-

The ring below is subjected to  $\mathbf{F}_1$  and  $\mathbf{F}_2$ . If we want a resultant force of 1kN and directed vertically downward, determine the magnitude of  $\mathbf{F}_1$  and  $\mathbf{F}_2$  if  $\theta = 30^\circ$ .





1000

Sin 130

$$F_{2} = \frac{1000 \text{ Sin } 30}{5 \text{ in } 130} = 653 \text{ M}$$

$$F_{2} = \frac{1000 \text{ Sin } 20}{5 \text{ in } 130} = 1446 \text{ M}$$

$$Sin 130$$

5in 30

Sin\_ 20









$$B_{x} = -B \sin \phi$$



$$C_X = + C Sind$$

Determine the x and y Cartesian components of the  $\mathbf{F}_1$  and  $\mathbf{F}_2$ forces acting on the boom. Put each force in the Cartesian vector form.



$$F_{2X} = 260 \left(\frac{12}{13}\right)$$
= 240

= -100

$$F_1 = (-100)\dot{c} + (173)\dot{j}$$

$$\frac{1}{2} = (240)^{2} + (-100)^{2}$$

### **Coplanar Force Resultants**



$$\overrightarrow{F_2}$$
 $\overrightarrow{F_1}$ 
 $\overrightarrow{F_3}$ 

$$\frac{2}{F_{2X}} = \frac{2}{F_{2X}} = \frac{2}{F_{1X}} + \frac{2}{F_{2X}} + \frac{2}{5}$$

$$F_{R} = \sqrt{F_{RX}^2 + F_{RY}^2}$$

### Example 3:-

The link in the figure is subjected to two forces,  $\mathbf{F_1}$  and  $\mathbf{F_2}$ .

Determine the resultant magnitude and orientation of the resultant force.



$$F_{Rx} = 519.6 - 282.8$$

$$= 236.8$$

### Problem # 3

Knowing that  $\alpha = 35^{\circ}$ ,

Determine: The resultant of the three forces shown



500 Sin 35

$$F_{3} = 600 \text{ N}$$

With any le with  $HZ = 35^{\circ}$ 
 $F_{3x} = 600 \text{ Gs} 35 = 491.5 \text{ N}$ 
 $F_{3y} = -600 \text{ Sin} 35 = -344.1 \text{ N}$ 

$$*F_{R_X} = \Sigma F_X = 281.9 + 229.4$$
  
+ 491.5 = 1002.8 N

$$FRy = \Sigma Fy = 102.9 + 327.7 - 344.1$$
  
= 86.2 N

\* 
$$FR = (1002.8)^2 + (86.2)^2 = 1006.5 \text{ m}$$

$$4 \Theta = \int_{002.8}^{-1} \frac{86.2}{1002.8} = 21.910$$

### 2.7. Cartesian Vectors



Unit Vectors in Coordinate Directions:

i, i: Unit vector in the x-direction

 $\vec{j}$ ,  $\hat{j}$ : Unit vector in the y-direction

 $\vec{k}$ ,  $\hat{k}$ : Unit vector in the z-direction

$$\overrightarrow{A} = (A_{\chi})^{2} + (A_{\zeta})^{3} + (A_{\zeta})^{2}$$

### **Unit Vectors**

$$U_A = \frac{A}{A}$$

## Magnitude

$$A = |A| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

$$U_{A} = \begin{pmatrix} Ax \\ A \end{pmatrix} \dot{i} + \begin{pmatrix} Ay \\ A \end{pmatrix} \dot{j} + \begin{pmatrix} AZ \\ A \end{pmatrix} \dot{k}$$

### **Direction of a Cartesian Vector**

Dine Sion angles:

- angle with & X-9 xis
- 13 angle With & J-9 Xis
- oryle with + Z-9xis

4 c B ≥ 0 c 7 < 180°



A₂k ♠

$$Gs^2 + Gs^2 + Gs^2 = 1$$

### 2.9. Coordinates of Relative Position Vectors

$$\overrightarrow{v} = \overrightarrow{OP}$$

$$= (x) \hat{c} + (y) \hat{j} + (z) \hat{k}$$





$$\begin{array}{lll}
\overline{AB} &= \overline{B} - \overline{A} \\
= (X_B - X_A) i + (Y_B - J_A) i + (Z_B - Z_A) i
\end{array}$$

### 2. 10. Force Along a Line

$$F = F U_{AB}$$

$$= F \sqrt{\frac{AB}{|AB|}}$$



Dire The of Force = Direction of Cable

unit ve Dor of Fora - unit ve Dor of able





### Example



The roof is supported as shown. If the cables exert forces of  $\mathbf{F}_{AB} = \mathbf{100} \, \mathbf{N}$  and  $\mathbf{F}_{AC} = \mathbf{120} \, \mathbf{N}$  on the wall hook at A, determine the magnitude of the resultant force acting at A.

# Step (A) Identify the absolute coordinates of all points (x, y, z)

$$B = (4/0/0)$$

$$F_{AB} = 100 \text{ N}$$

$$C = (4/2/0)$$

$$F_{AC} = 120 \text{ N}$$

### Step (B) Identify the absolute position vectors

### Step (C) Identify the position vectors of the mechanical elements

$$\overrightarrow{AB} = \overrightarrow{r_B} - \overrightarrow{r_A} = (4) \overrightarrow{c} + (0) \overrightarrow{i} - (4) \overrightarrow{k}$$

$$|\overrightarrow{AB}| = \sqrt{(4)^2 + (-4)^2} = 5.66 \text{ M}$$

$$Ac = r_{c} - r_{A} = (4)i + (2)i - (4)k$$

$$|Ac1| = \sqrt{(4)^{2} + (2)^{2} + (-4)^{2}} = 6M$$

### Step (D) Find the unit position vectors

$$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{k}}{|\overrightarrow{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{k}}{|\overrightarrow{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{k}}{|\cancel{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{i}}{|\cancel{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{i}}{|\cancel{AB}|} = \frac{(4) \cdot \widehat{i} - (4) \cdot \widehat{i}}{|\cancel{AB}|} = \frac{(4) \cdot \widehat{$$

$$\frac{1}{V_{AC}} = \frac{AC}{|AC|} = \frac{4i + 2j - 4k}{6}$$

$$= 46i + 36j - 46k$$

### Step (E) Identify the force vectors

$$F_{AC} = 120 \, U_{AC} = 120 \, (4\% \, i + 2\% \, j - 4\% \, k)$$

$$= 80 \, i + 40 \, j - 80 \, k$$

### Step (F) Find the resultant force

$$F_{R} = F_{A13} + F_{AC}$$

$$= (70.7 + 80) \hat{i} + (40) \hat{j} + (-70.7 - 80) \hat{k}$$

$$= 150.7 \hat{i} + 40 \hat{j} - 150.7 \hat{k}$$

### Step (G) Identify the magnitude and direction of the resultant

$$F_{R} = \sqrt{(150.7)^{2} + (-150.7)^{2}}$$

$$= 217 N$$

$$\cos \alpha = \frac{Ax}{A} = \frac{150.7}{217} \Rightarrow \alpha = V$$

$$\cos \beta = \frac{Ay}{A} = \frac{40}{217} \Rightarrow \beta = \sqrt{2}$$





| Step (B) | Identify the absolute position vectors                   |
|----------|----------------------------------------------------------|
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |
| Step (C) | Identify the position vectors of the mechanical elements |
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |
| Step (D) | Find the unit position vectors                           |
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |
|          |                                                          |



Step (G) Identify the magnitude and direction of the resultant





| $\mathbb{F}_{\mathbb{I}}$ | 110 N      |
|---------------------------|------------|
| F2                        | 140 N      |
| )## <sub>[3]</sub>        | 60 N       |
| CCC                       | 34 degrees |
| B                         | 25 degrees |
| ő                         | 20 degrees |
|                           |            |

| PROBLEM 2.43                                                      |  |
|-------------------------------------------------------------------|--|
| Two cables are tied together at $C$ and are loaded as shown.      |  |
| Determine the tension $(a)$ in cable $AC$ , $(b)$ in cable $BC$ . |  |
| SOLUTION SOLUTION                                                 |  |
| A 50° 30° B                                                       |  |
|                                                                   |  |
| C                                                                 |  |
|                                                                   |  |
| 400 lb                                                            |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |





Fig. 1 Parallelogram law applied to add forces P and Q.



**Fig. 2** Triangle rule applied to add forces **P** and **Q**.



**Fig. 3** Geometry of triangle rule applied to add forces **P** and **Q**.



**Fig. 4** Alternative geometry of triangle rule applied to add forces **P** and **Q**.

#### Sample Problem 2.1

Two forces **P** and **Q** act on a bolt A. Determine their resultant.

**STRATEGY:** Two lines determine a plane, so this is a problem of two coplanar forces. You can solve the problem graphically or by trigonometry.

**MODELING:** For a graphical solution, you can use the parallelogram rule or the triangle rule for addition of vectors. For a trigonometric solution, you can use the law of cosines and law of sines or use a right-triangle approach.

#### **ANALYSIS:**

**Graphical Solution.** Draw to scale a parallelogram with sides equal to  $\bf P$  and  $\bf Q$  (Fig. 1). Measure the magnitude and direction of the resultant. They are

$$R = 98 \text{ N}$$
  $\alpha = 35^{\circ}$   $\mathbf{R} = 98 \text{ N} \angle 35^{\circ}$ 

You can also use the triangle rule. Draw forces P and Q in tip-to-tail fashion (Fig. 2). Again measure the magnitude and direction of the resultant. The answers should be the same.

$$R = 98 \text{ N}$$
  $\alpha = 35^{\circ}$   $R = 98 \text{ N} \angle 35^{\circ}$ 

**Trigonometric Solution.** Using the triangle rule again, you know two sides and the included angle (Fig. 3). Apply the law of cosines.

$$R^2 = P^2 + Q^2 - 2PQ \cos B$$
  
 $R^2 = (40 \text{ N})^2 + (60 \text{ N})^2 - 2(40 \text{ N})(60 \text{ N}) \cos 155^\circ$   
 $R = 97.73 \text{ N}$ 

Now apply the law of sines:

$$\frac{\sin A}{Q} = \frac{\sin B}{R} \qquad \frac{\sin A}{60 \text{ N}} = \frac{\sin 155^{\circ}}{97.73 \text{ N}}$$
 (1)

Solving Eq. (1) for  $\sin A$ , you obtain

$$\sin A = \frac{(60 \text{ N}) \sin 155^{\circ}}{97.73 \text{ N}}$$

Using a calculator, compute this quotient, and then obtain its arc sine:

$$A = 15.04^{\circ}$$
  $\alpha = 20^{\circ} + A = 35.04^{\circ}$ 

Use three significant figures to record the answer (cf. Sec. 1.6):

$$R = 97.7 \text{ N} \angle 35.0^{\circ}$$

**Alternative Trigonometric Solution.** Construct the right triangle *BCD* (Fig. 4) and compute

$$CD = (60 \text{ N}) \sin 25^\circ = 25.36 \text{ N}$$

$$BD = (60 \text{ N}) \cos 25^\circ = 54.38 \text{ N}$$

