Example 1:- The screw eye in the figure at the left is subjected to two forces \vec{F}_1 and \vec{F}_2 . Determine the magnitude and direction of the resultant force. $$\phi = 180 - 65 = 115$$ $$R = \int_{100^{2} + 150^{2}}^{2} - 2(100)(150) GS 115$$ $$= 213 \quad N$$ $$0 = \sin \left(\frac{150 \sin 115}{213} \right)$$ $= 39.7^{\circ}$ ## Example 2:- The ring below is subjected to $\mathbf{F_1}$ and $\mathbf{F_2}$. If we want a resultant force of 1 kN and directed vertically downward, determine the magnitude of $\mathbf{F_1}$ and $\mathbf{F_2}$ if $\mathbf{\theta} = 30^\circ$. Sine law $$F_1 = F_2 = 1000$$ $$Sin 30 = Sin 130$$ $$F_{1} = \frac{1000 \text{ Sin } 30}{\text{Sin } 130} = 653 \text{ M}$$ $$F_{2} = \frac{1000 \text{ Sin } 20}{\text{Sin } 130} = 446 \text{ M}$$ Two control rods are attached at A to lever AB. Using trigonometry and knowing that the force in the left-hand rod is F1=30N, **Determine:** (a) The required force F2 in the right-hand rod if the resultant R of that forces exerted by the rods on the lever is to be vertical. (b) The corresponding magnitude of R. $$\frac{F_2}{5in.62} = \frac{R}{sin.80} = \frac{30}{sin.80}$$ $$R = \frac{30 \sin 38}{\sin 80} = 19 N$$ Determine the x and y Cartesian components of the \mathbf{F}_1 and \mathbf{F}_2 forces acting on the boom. Put each force in the Cartesian vector form. $$R_{\chi} = \Sigma F_{\chi} \xrightarrow{+}$$ $$R_{y} = \Sigma F_{y} \xrightarrow{+}$$ $$R = \sqrt{R_X^2 + R_y^2}$$ $$\Theta = \frac{10^{-1} Ry}{Rx}$$ # Problem # 2 Jension The Guy wire BD exerts on the telephone pole AC a force P directed along BD. Knowing that P has a 450-N component along line AC, **Determine:** (a) The magnitude of the force **P**, (b) Its component in a direction perpendicular to AC. $$P = \frac{450}{6 \times 35} = 549.3$$ $$P_{X} = P \sin 35$$ ### Example 3:- The link in the figure is subjected to two forces, $\mathbf{F_1}$ and $\mathbf{F_2}$ is subjected $F_2 = 400N$ $F_1 = 600$ $T_2 = 400N$ $T_3 = 600$ $T_4 = 600$ $T_5 = 600$ $T_6 = 600$ $T_7 = 600$ $T_8 T Determine the resultant magnitude and orientation of the resultant force. $$*$$ $R_X = \Sigma F_X \xrightarrow{t}$ $$=519.6-282.8=236.8$$ $$= 300 + 282.8 = 582.8 \text{ M}$$ $$R = \left\{ R_{\chi}^2 + R_{y}^2 \right\}$$ $$= \sqrt{236.8^2 + 582.8^2} = 629.1 \text{ N}$$ $$* \Theta = jan \frac{582-8}{236-8} = 67-9^{\circ}$$ Knowing that $\alpha = 35^{\circ}$, **Determine**: The resultant of the three forces shown $$F_{1X} = 300 G S 20 = 281.9 N$$ $$F_{2j} = 400 \, \text{Sin} \, 55 = 327.7 \, \text{V}$$ $$F_{3x} = +600 GS35 = 491.5 N$$ $$F_{3y} = -600 \sin 35 = -344.1 \text{ M}$$ $$R_{\chi} = \Sigma F_{\chi} = 281.9 + 229.4 + 491.5$$ $$= 1002.8$$ $$Ry = \Sigma Fy = 102.9 + 327.7 - 344.1$$ $$= 86.2 \text{ N}$$ $$R = \sqrt{1002.8^2 + 86.2^2} = 1006.5 \text{ N}$$ $$4 \theta = 4an \frac{86.2}{1002.8} = 4.91^{\circ}$$ Knowing that $\alpha = 35^{\circ}$, Determine: The resultant of the three forces shown 600 N $$F_{2j} = 400 \, \text{Sin} \, 35 = 229.43$$ $$F_{3\chi} = +600 \text{ Sin } 35 = 344.15$$ $$F_{31} = -600 \text{ Gs } 35 = -491.5$$ $$R_{\chi} = \Sigma F_{\chi} = 300 + 32 + 7 + 344.15$$ = 971.85 $$Ry = \Sigma Fy = 229.43 - 491.5$$ = -262.07 * $$R = (971.85)^{2} + (-262.07)^{2} = 1006.5 \text{ N}$$ $$4 \theta = 4an \frac{-267.07}{971.85} = -15.09^{\circ}$$ $$\Theta = 20 - 15.09 = 4.910$$ with HZ- 9xis Two cables are tied together at C and are loaded as shown. Knowing that $\alpha = 30^{\circ}$, **Determine:** the tension (a) in cable AC, (b) cable BC. $$W = Mg$$ $$= 300 * 9.81 = 2943 N$$ $$The TBe = 2943$$ $$Sin 60 = Sin 5S = Sin 65$$ $$The TBe = 2943 Sin 60 = 2812.19$$ # 2.3 Equilibrium of a Particle $\Sigma F = 0$ - * When Panticle @ rest - * Moving with mstand relacity - D Resolve - $\sum F_{\chi} = 0 \qquad \qquad \uparrow \qquad \qquad 2 E_{9}$ $\sum F_{\chi} = 0 \qquad \qquad \uparrow \qquad \qquad 2 Unknows$ # Remark $$R = R_X = \Sigma F_X$$ ### PROBLEM 2.51 Two forces **P** and **Q** are applied as shown to an aircraft connection. Knowing that the connection is inequilibrium and that $P = 500 \, \text{N}$ and $Q = 650 \, \text{N}$, determine the magnitudes of the forces exerted on the rods A and B. $$F_{A} = 1303 \text{ N}$$ $$EF_{X} = 0 \quad + 6$$ $$650 \sin 40 \quad - F_{A} \cos 50 \quad + F_{B} = 0$$ $$1303$$ $$F_{B} = 1303 \cos 50 \quad - 650 \sin 40$$ $$= 420 \text{ N}$$ # Quiz # 1 Fall 2016 Two forces of magnitude $T_A = 8 \text{ KN}$ and $T_B = 15 \text{ KN}$ are applied as shown to a welded connection. Knowing that the connection is in equilibrium, **Determine**: the magnitudes of the forces T_C and T_D . under Equilibrium:- Four wooden members are joined with metal plate connectors and are in equilibrium under the action of the four forces shown. Knowing that $F_A = 2.3 \text{ kN}$ and $F_B = 2.1 \text{ kN}$, **Determine**: the magnitudes of the other two forces. $$\Sigma F_{y} = 0$$ $F_{0} + 2.1 \sin 15 - 2.3 G \sin 15 = 0$ $F_{0} = 1.68 \text{ km}$ Quiz 2.29 A hoist trolley is subjected to the three forces shown. Knowing that $\alpha =$ 40°, determine (a) the magnitude of the force P for which the resultant of the three forces is vertical, (b) the corresponding magnitude of the resultant. solution $$\varrho_{\chi} = \Sigma F_{\chi} = 0$$ 200 Sin 40 + P - 400 Cos 40 = 0 $$= -400 \sin 40 - 200 G = -410.3$$ $$R = |Ry| = 410.3 \text{ M}$$ The Resultant is ventical: $$R = Ry = \Sigma Fy \qquad \uparrow +$$ $$R_{x} = \Sigma F_{x} = 0 \qquad \stackrel{+}{\longrightarrow}$$ ### midterm 1 #### PROBLEM 2.6 A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a) Knowing that $\alpha = 25^{\circ}$, determine by trigonometry the magnitude of the force P so that the resultant force exerted on the trolley is vertical. (b) What is the corresponding magnitude of the resultant? ### Midterm 1 #### PROBLEM 2.10 Two forces are applied as shown to a hook support. Knowing that the magnitude of **P** is 35 N, determine by trigonometry (a) the required angle α if the resultant **R** of the two forces applied to the support is to be horizontal, (b) the corresponding magnitude of **R**. Question # 2: [25 Points]. The bulb support system composed of 5 different wires. Knowing that the bulb mass is 25 kg and the tension in the wire DF (F_{DF}) equals the weight of the bulb, you are required to: a) Draw the necessary free-body diagrams of the points C and D. b) Calculate the forces in the cables F_{DE} , F_{CD} , F_{AC} and F_{BC} | Midter M (r) | | | | | | |---|---|--|--|--|--| | PROBLEM 2.43 | PROBLEM 2.53 | | | | | | Two cables are tied together at C and are loaded as shown. | A welded connection is in equilibrium under the action of the four forces | | | | | | Determine the tension (a) in cable AC , (b) in cable BC . | shown. Knowing that $F_A = 8 \text{ kN}$ and $F_B = 16 \text{ kN}$, determine the | | | | | | SOLUTION | magnitudes of the other two forces. SOLUTION A The state of the other two forces. | | | | | | 400 lb | \mathbf{F}_{A} \mathbf{F}_{D} | PROBLEM 2.49 | PROBLEM 2.129 | | | | | |---|--|--|--|--|--| | Two cables are tied together at C and are loaded as shown. | A hoist trolley is subjected to the three forces shown. Knowing that $\alpha = 40^{\circ}$, | | | | | | Knowing that $P = 300$ N, determine the tension in cables AC and BC . | determine (a) the required magnitude of the force P if the resultant of the three forces is to be vertical, | | | | | | SOLUTION A 30° 30° 30° C 45° P | (b) the corresponding magnitude of the resultant. SOLUTION | | | | | | | 400 lb 200 lb | PROBLEM 2.35 Knowing that $\alpha = 35^{\circ}$, determine the resultant of the three forces shown. | | | | |---|-------------|---|--| | | 200 N 100 N | | | | | 150 N | _ |