

Example 1:-

The screw eye in the figure at the left is subjected to two forces \vec{F}_1 and \vec{F}_2 .

Determine the magnitude and direction of the resultant force.

$$\phi = 180 - 65 = 115$$

$$R = \int_{100^{2} + 150^{2}}^{2} - 2(100)(150) GS 115$$

$$= 213 \quad N$$

$$0 = \sin \left(\frac{150 \sin 115}{213} \right)$$
 $= 39.7^{\circ}$

Example 2:-

The ring below is subjected to $\mathbf{F_1}$ and $\mathbf{F_2}$. If we want a resultant force of 1 kN and directed vertically downward, determine the magnitude of $\mathbf{F_1}$ and $\mathbf{F_2}$ if $\mathbf{\theta} = 30^\circ$.

Sine law

$$F_1 = F_2 = 1000$$

$$Sin 30 = Sin 130$$

$$F_{1} = \frac{1000 \text{ Sin } 30}{\text{Sin } 130} = 653 \text{ M}$$

$$F_{2} = \frac{1000 \text{ Sin } 20}{\text{Sin } 130} = 446 \text{ M}$$

Two control rods are attached at A to lever AB.

Using trigonometry and knowing that the force in the left-hand rod is F1=30N,

Determine: (a) The required force F2 in the right-hand rod if the resultant R of that forces exerted by the rods on the lever is to be vertical.

(b) The corresponding magnitude of R.

$$\frac{F_2}{5in.62} = \frac{R}{sin.80} = \frac{30}{sin.80}$$

$$R = \frac{30 \sin 38}{\sin 80} = 19 N$$

Determine the x and y Cartesian components of the \mathbf{F}_1 and \mathbf{F}_2 forces acting on the boom. Put each force in the Cartesian vector form.

$$R_{\chi} = \Sigma F_{\chi} \xrightarrow{+}$$

$$R_{y} = \Sigma F_{y} \xrightarrow{+}$$

$$R = \sqrt{R_X^2 + R_y^2}$$

$$\Theta = \frac{10^{-1} Ry}{Rx}$$

Problem # 2 Jension

The Guy wire BD exerts on the telephone pole AC a force P directed along BD. Knowing that P has a 450-N component along line AC,

Determine: (a) The magnitude of the force **P**,

(b) Its component in a direction perpendicular to AC.

$$P = \frac{450}{6 \times 35} = 549.3$$

$$P_{X} = P \sin 35$$

Example 3:-

The link in the figure is subjected to two forces, $\mathbf{F_1}$ and $\mathbf{F_2}$

is subjected $F_2 = 400N$ $F_1 = 600$ $T_2 = 400N$ $T_3 = 600$ $T_4 = 600$ $T_5 = 600$ $T_6 = 600$ $T_7 = 600$ $T_8 = 600$ T

Determine the resultant magnitude and orientation of the resultant force.

$$*$$
 $R_X = \Sigma F_X \xrightarrow{t}$

$$=519.6-282.8=236.8$$

$$= 300 + 282.8 = 582.8 \text{ M}$$

$$R = \left\{ R_{\chi}^2 + R_{y}^2 \right\}$$

$$= \sqrt{236.8^2 + 582.8^2} = 629.1 \text{ N}$$

$$* \Theta = jan \frac{582-8}{236-8} = 67-9^{\circ}$$

Knowing that $\alpha = 35^{\circ}$,

Determine: The resultant of the three forces shown

$$F_{1X} = 300 G S 20 = 281.9 N$$

$$F_{2j} = 400 \, \text{Sin} \, 55 = 327.7 \, \text{V}$$

$$F_{3x} = +600 GS35 = 491.5 N$$

$$F_{3y} = -600 \sin 35 = -344.1 \text{ M}$$

$$R_{\chi} = \Sigma F_{\chi} = 281.9 + 229.4 + 491.5$$

$$= 1002.8$$

$$Ry = \Sigma Fy = 102.9 + 327.7 - 344.1$$

$$= 86.2 \text{ N}$$

$$R = \sqrt{1002.8^2 + 86.2^2} = 1006.5 \text{ N}$$

$$4 \theta = 4an \frac{86.2}{1002.8} = 4.91^{\circ}$$

Knowing that $\alpha = 35^{\circ}$,

Determine: The resultant of the three forces shown

600 N

$$F_{2j} = 400 \, \text{Sin} \, 35 = 229.43$$

$$F_{3\chi} = +600 \text{ Sin } 35 = 344.15$$

$$F_{31} = -600 \text{ Gs } 35 = -491.5$$

$$R_{\chi} = \Sigma F_{\chi} = 300 + 32 + 7 + 344.15$$

= 971.85

$$Ry = \Sigma Fy = 229.43 - 491.5$$

= -262.07

*
$$R = (971.85)^{2} + (-262.07)^{2} = 1006.5 \text{ N}$$

$$4 \theta = 4an \frac{-267.07}{971.85} = -15.09^{\circ}$$

$$\Theta = 20 - 15.09 = 4.910$$
with HZ- 9xis

Two cables are tied together at C and are loaded as shown. Knowing that $\alpha = 30^{\circ}$,

Determine: the tension (a) in cable AC, (b) cable BC.

$$W = Mg$$

$$= 300 * 9.81 = 2943 N$$

$$The TBe = 2943$$

$$Sin 60 = Sin 5S = Sin 65$$

$$The TBe = 2943 Sin 60 = 2812.19$$

2.3 Equilibrium of a Particle $\Sigma F = 0$

- * When Panticle @ rest
- * Moving with mstand relacity
 - D Resolve
 - $\sum F_{\chi} = 0 \qquad \qquad \uparrow \qquad \qquad 2 E_{9}$ $\sum F_{\chi} = 0 \qquad \qquad \uparrow \qquad \qquad 2 Unknows$

Remark

$$R = R_X = \Sigma F_X$$

PROBLEM 2.51

Two forces **P** and **Q** are applied as shown to an aircraft connection. Knowing that the connection is inequilibrium and that $P = 500 \, \text{N}$ and $Q = 650 \, \text{N}$, determine the magnitudes of the forces exerted on the rods A and B.

$$F_{A} = 1303 \text{ N}$$

$$EF_{X} = 0 \quad + 6$$

$$650 \sin 40 \quad - F_{A} \cos 50 \quad + F_{B} = 0$$

$$1303$$

$$F_{B} = 1303 \cos 50 \quad - 650 \sin 40$$

$$= 420 \text{ N}$$

Quiz # 1 Fall 2016

Two forces of magnitude $T_A = 8 \text{ KN}$ and $T_B = 15 \text{ KN}$ are applied as shown to a welded connection. Knowing that the connection is in equilibrium,

Determine: the magnitudes of the forces T_C and T_D .

under Equilibrium:-

Four wooden members are joined with metal plate connectors and are in equilibrium under the action of the four forces shown. Knowing that $F_A = 2.3 \text{ kN}$ and $F_B = 2.1 \text{ kN}$,

Determine: the magnitudes of the other two forces.

$$\Sigma F_{y} = 0$$
 $F_{0} + 2.1 \sin 15 - 2.3 G \sin 15 = 0$
 $F_{0} = 1.68 \text{ km}$

Quiz

2.29 A hoist trolley is subjected to the three forces shown. Knowing that $\alpha =$ 40°, determine (a) the magnitude of the force P for which the resultant of the three forces is vertical, (b) the corresponding magnitude of the resultant.

solution

$$\varrho_{\chi} = \Sigma F_{\chi} = 0$$

200 Sin 40 + P - 400 Cos 40 = 0

$$= -400 \sin 40 - 200 G = -410.3$$

$$R = |Ry| = 410.3 \text{ M}$$

The Resultant is ventical:
$$R = Ry = \Sigma Fy \qquad \uparrow +$$

$$R_{x} = \Sigma F_{x} = 0 \qquad \stackrel{+}{\longrightarrow}$$

midterm 1

PROBLEM 2.6

A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a) Knowing that $\alpha = 25^{\circ}$, determine by trigonometry the magnitude of the force P so that the resultant force exerted on the trolley is vertical. (b) What is the corresponding magnitude of the resultant?

Midterm 1

PROBLEM 2.10

Two forces are applied as shown to a hook support. Knowing that the magnitude of **P** is 35 N, determine by trigonometry (a) the required angle α if the resultant **R** of the two forces applied to the support is to be horizontal, (b) the corresponding magnitude of **R**.

Question # 2: [25 Points]. The bulb support system composed of 5 different wires. Knowing that the bulb mass is 25 kg and the tension in the wire DF (F_{DF}) equals the weight of the bulb, you are required to: a) Draw the necessary free-body diagrams of the points C and D. b) Calculate the forces in the cables F_{DE} , F_{CD} , F_{AC} and F_{BC}

Midter M (r)					
PROBLEM 2.43	PROBLEM 2.53				
Two cables are tied together at C and are loaded as shown.	A welded connection is in equilibrium under the action of the four forces				
Determine the tension (a) in cable AC , (b) in cable BC .	shown. Knowing that $F_A = 8 \text{ kN}$ and $F_B = 16 \text{ kN}$, determine the				
SOLUTION	magnitudes of the other two forces. SOLUTION A The state of the other two forces. The state of the other two forces.				
400 lb	\mathbf{F}_{A} \mathbf{F}_{D}				

PROBLEM 2.49	PROBLEM 2.129				
Two cables are tied together at C and are loaded as shown.	A hoist trolley is subjected to the three forces shown. Knowing that $\alpha = 40^{\circ}$,				
Knowing that $P = 300$ N, determine the tension in cables AC and BC .	determine (a) the required magnitude of the force P if the resultant of the three forces is to be vertical,				
SOLUTION A 30° 30° 30° C 45° P	(b) the corresponding magnitude of the resultant. SOLUTION				
	400 lb 200 lb				

PROBLEM 2.35 Knowing that $\alpha = 35^{\circ}$, determine the resultant of the three forces shown.			
	200 N 100 N		
	150 N		
		_	

