TOPIC 4(A)- Calculations

Solar collector calculations

(thermodynamics book, chapter 18 "RENEWABLE ENERGY")

1. Solar Radiation

When solar radiation strikes a surface, part of it is absorbed, part of it is reflected, and the remaining part, <u>any, is transmitted</u>.

That is,

$$
P_+ \cap P_+ = 1
$$

where τ_s the transmissivity, ρ is the reflectivity, and α is the absorptivity of the surface for solar energy.

Here, we also define **emissivity** ϵ **of a surface as a** measure of how closely a real surface **approximates a blackbody**, for which $\epsilon = 1$. Therefore, the emissivity of a surface varies between zero and one, $0 \le \epsilon \le 1$.

$$
Q_{incifert} = G A (w_1 + 1)
$$

Semitrans

materi

$$
A \subset M^2
$$

\n
$$
\varphi_{incibext} = \frac{\epsilon A}{2}
$$

\n
$$
\varphi_{incibext} = \epsilon A
$$

 $C - (W_{nn}^2)$

$$
absont of
$$
\n
$$
\hat{\psi}_{obs} = 2 \alpha R
$$

2. Flat-Plate Solar Collector

The **rate of solar heat absorbed by** the absorber plate is:

$$
\varphi_{\rm abs} = 0 \propto A \subset
$$

where τ is the transmissivity of the glazing, α is the absorptivity of the absorber plate, \overline{A} is the area of the collector surface, in $\overline{m^2}$, and \overline{G} is the solar *insolation* or *irradiation* (solar radiation incident per unit surface area), in W/m^2 Heat is lost from the collector by convection to the surrounding air and by radiation to the surrounding surfaces and sky, and it can be expressed as

$$
\varphi_{loss} = \cup A(\tau_c - \tau_a)
$$

where (U) is the overall heat transfer coefficient, in W/m^2 °C, that accounts for combined effects of convection and radiation, T_c is the average collector temperature, and T_a is the ambient air temperature, both in \degree C. The useful heat transferred to the water is the difference between the heat absorbed and the heat lost:

If the mass flow rate of water flowing through the collector \dot{m} is known, the useful heat can also be determined from:

 $\dot{\varphi}_{\text{Useful}}$ = $\dot{M} C_{\rho} (\text{Tw}_{\rho\text{out}} | - \text{Tw}_{\rho\text{in}}))$ where c_p is the specific heat of water, in J/kg^oC, $T_{w,in}$ and $T_{w,out}$ are the inlet and **outlet temperatures** of water, respectively. For the same useful heat, a higher mass flow rate would yield a lower temperature rise for water in the collector. QUSEFUEL The efficiency of a solar collector may be defined as the ratio of the useful heat delivered to water to the radiation incident on the collector: $\frac{Q_{UseFul}}{Q_{incileat}} = \frac{2\alpha AG - UA(T_{C}-T_{9})}{AG}$ (w, m) $\gamma_c =$ \sim water $\begin{array}{cc} \mathcal{C} = & \frac{out}{in} \mathcal{P}ut \\ \mathcal{C} = & \frac{out}{in} \mathcal{P}ut \end{array}$ Density $T_{w/out}$ 0.9 $0.8²$ 0.7 M_{h} \Rightarrow F_{low} $\overrightarrow{n} = 5$ \overrightarrow{r} mode
 M_{h} $\overrightarrow{n} = 5$ \overrightarrow{r} mode
 M_{h} $\overrightarrow{n} = 5$ \overrightarrow{r} mode Efficiency 0.6 Double glazing 0.5 0.4 lo glazing 0.3 0.2 0.1 $\bf{0}$ 0.3 0.2 0.4 0.5 $\bf{0}$ 0.1 $(T_C - T_{\partial}/G)$ \degree = Tx = U $\frac{1}{2}$ - Tq $\dot{\varphi}_{\text{Use}} = M C_{p} (\tau_{w_{\text{leaf}}} - \tau_{w_{\text{aff}}})$

Equation 18–6 gives the collector efficiency as a function of average temperature of the collector. However, this temperature is usually not available. Instead, water temperature at the collector inlet is available. The collector efficiency may be defined as a function of the water inlet temperature as

$$
\gamma_{c} = F_{R} \quad \tau_{c} \alpha - F_{R} \cup \frac{\tau_{\omega, in} - \tau_{q}}{\tau_{q}}
$$

where F_R is the collector heat removal factor.

This relation is known as Hottel-Whillier-Bliss equation.

The solar collector is normally fixed in position. As the angle of solar incident radiation changes throughout the day, the product τ_{α} also changes. This change can be accounted for by including an *incident angle modifier* K_{τ} in Eq. 18–7 as

$$
\begin{array}{c}\n\gamma \\
C\n\end{array} = \frac{1}{2} \frac{1}{2
$$

CREATED BY ENG AHMAD SABRI ; +974 5572 4426

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

18–30 Solar radiation is incident on a flat-plate collector at a rate of $\frac{750 \text{ W/m}^2}{2}$. The glazing has a transmissivity of 0.86 \degree and the absorptivity of absorber plate is 0.95. The heat loss coefficient of the collector is $3 W/m^2$. The collector is at an average temperature of 45° C and the ambient air temperature is 23° C. Determine the efficiency of this collector.

$$
\frac{7}{6} = 7\alpha - 0 \xrightarrow{6-7q} 45-23
$$
\n
$$
= 0.86 * 0.95 - (3) \xrightarrow{45-23}
$$

$$
\overline{750}
$$

$$
= 0.729 = 72.97
$$

tors with a tot
is
$$
700 \text{ W/m}^2
$$
.
what is the pc

18–35 A solar power plant utilizes parabolic trough collecal collector area of $2500^{\frac{1}{1}}$ The solar irradiation If the efficiency of this solar plant is 8 percent, ower generated? Answer: 140 kW

18–32 Solar radiation is incident on a flat-plate collector at a rate of 880 W/m^2 . The product of the transmissivity of glazing and the absorptivity of absorber plate is 0.82 . The collector has a surface area of 33 m^2 . This collector supplies hot water to a facility at a rate of 6.3 L/min. Cold water enters the collector at 18° . If the efficiency of this collector is 70 percent, determine the temperature of hot water provided by the collector. Answer: 64.3°C

> $M = P V$ $= 1 \text{ kg} * 6.3 \frac{K}{60} \text{ sec}$ $= 0.105$ Kg $q_{incident}$ = $AG = 33 * 880$ $= 29040$ W $\frac{\partial \rho}{\partial \dot{\rho}} = \frac{\rho_{\text{oseful}}}{\dot{\rho}_{\text{incil}}}$ $\dot{\rho}_{\text{oseful}} = 0.74 * 29040$ $PUSEFeI = Z0 328 W$

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

CREATED BY ENG AHMAD SABRI ; +974 5572 4426

Teble (18 - 6 4) $SHGC = O·87^{\circ}SC$ SHGC A x y solar, dail $U = 4.55$ W_{M^2} . $\frac{wh}{m^2}$ 7 ble 18-3 1863

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

18–48 A typical winter day in Reno, Nevada (39° N latitude), is cold but sunny, and thus the solar heat gain through the windows can be more than the heat loss through them during daytime. Consider a house with double-door-type windows that are double paned with 3-mm-thick glasses and 6.4 mm of air space and have aluminum frames and spacers. The overall heat transfer coefficient for this window is 4.55 W/m^2 . The house is maintained at 22°C at all times. Determine if the house is losing more or less heat than it is gaining from the sun through an average outdoor temperature is 10°C. Answer: less

CREATED BY ENG AHMAD SABRI ; +974 5572 4426

 $\dot{\varphi} = \frac{\varphi}{\Lambda t} \Rightarrow \varphi_{loss} = \dot{\varphi}_{loss} \Delta t$ $SHGC = O.87 + 0.88$ $= 0.7656$ $Solv, gain = SHFS + P_{glaziy} + ?$ $Solar$ daily $\frac{24-h}{h}$ period if the $= 0.7656 + 1 * 1863$ 1426 Wh = 1.426 kwh $\varphi_{\text{loss, window}} = \varphi_{\text{loss}} * \Delta t$ $=$ U A (T; $-T_{o,av}$) * 24 hr Winton Wint $= 4.55 * 1 * (22 - 10) * 24 h$ $= 1310$ Wh = 1.31 kwh $P_{\text{loss},without}$ \leftarrow 9 solar,gain Amough East Windows in January

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

18–48 A typical winter day in Reno, Nevada (39° N latitude), is cold but sunny, and thus the solar heat gain through the windows can be more than the heat loss through them during daytime. Consider a house with double-door-type windows that are double paned with 3-mm-thick glasses and 6.4 mm of air space and have aluminum frames and spacers. The overall heat transfer coefficient for this window is 4.55 W/m^2 . The house is maintained at 22°C at all times. Determine if the house is losing more or less heat than it is gaining from the sun through an east window on a typical day in January for $a(24-h)$ period if the average outdoor temperature is 10°C. Answer: less

CREATED BY ENG AHMAD SABRI ; +974 5572 4426

 $\dot{\varphi} = \frac{\varphi}{\Lambda t} \Rightarrow \varphi_{loss} = \dot{\varphi}_{loss} \Delta t$ $SHGC = O.87 * O.88$ $= 0.7656$ $P_{Solar, gain} = SHFS + P_{gl} + Y_{Solar}$ Juily $\frac{1}{2}$ $= 0.7656 + 1 * 1863$ 1426 Wh = 1.426 KWh $\Psi_{loss, window} = \Phi_{loss} * \Delta t$ $=\bigcup_{\mathfrak{m}}\bigcap_{\mathfrak{m}}\left(\top_{\mathfrak{c}}\leftarrow\top_{o_{\mathfrak{cav}}}\right)*24hr$ = 4.55 + 1 * (22 - 10) * 24 hr $= 1310$ Wh = 1.31 kwh Pluss, window < Bolar, gain
Alwayh Gast Windows in January

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

3. Concentrating Solar Collector

The most common type of concentrating solar collector is **parabolic trough collector**

In a concentrating collector, solar radiation is incident on the collector surface, called aperture area A_n , and this radiation reflected or redirected into a smaller receiver area A_r . The concentration factor CR is then defined as

$$
CR = \frac{A_a}{A_r} >
$$

The value of CR is greater than one. The greater the value of CR, the greater the hot fluid temperature. The effectiveness of the aperture-to-receiver process is functions of orientation of surfaces and their radiative properties
such as absorptivity and reflectivity. This effectiveness is expressed by an
optical efficiency term (η_{av}) Then, the net rate of solar radiatio

$$
\dot{Q}_r = \eta_a A_a G
$$

where \overline{G} is the solar irradiation, in W/m2

(b)

The **rate of heat loss from the collector** is expressed as

$$
\dot{Q}_{\text{loss}} = UA_r(T_c - T_a)
$$

The **useful heat transferred** to the fluid is:

$$
\dot{Q}_{\text{useful}} = \dot{Q}_r - \dot{Q}_{\text{loss}} = \eta_{ar} A_a G - U A_r (T_c - T_a)
$$

The efficiency of this solar collector is *defined as the ratio of the useful heat delivered to the fluid to the radiation incident on the collector*:

$$
\eta_c = \frac{\dot{Q}_{\text{useful}}}{\dot{Q}_{\text{incident}}} = \frac{\eta_{ar} A_a G - U A_r (T_c - T_a)}{A_a G}
$$

$$
= \eta_{ar} - \frac{U A_r (T_c - T_a)}{A_a G} = \eta_{ar} - \frac{U (T_c - T_a)}{C R \times G}
$$

Therefore, *the collector efficiency is maximized for maximum values of the optical efficiency of the aperture-to-receiver process ηar and the concentration factor CR*.

The efficiency of concentrating collectors is greater than that of flat-plate collectors

- Linear Concentrating Solar Power Collector

The efficiency of *a solar system used to produce electricity* may be defined as the power produced divided by the total solar irradiation. That is,

$$
\eta_{\text{th,solar}} = \frac{\dot{W}_{\text{out}}}{\dot{Q}_{\text{incident}}} = \frac{\dot{W}_{\text{out}}}{A_c G}
$$

where *Ac* is the collector surface area receiving solar irradiation and *G* is the solar irradiation.

 $SHGC = 0.87 (SC)$ 9800×10^{-6}
 9000×10^{-4}
 1000×10^{-4}
 1000×10^{-4}
 1000×10^{-4}

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

18–47 Consider a building in New York (40° N latitude) that has 76 m^2 of window area on its south wall. The windows are double-pane heat-absorbing type, and are equipped ? with light-colored venetian blinds with a shading coefficient of \vert SC = 0.30. Determine the total solar heat gain of the building through the **south windows** at solar noon in April. What would your answer be if there were no blinds at the windows?

18–45 A house located in Boulder, Colorado (40° N) latitude), has ordinary double-pane windows with 6-mm-thick glasses and the total window areas are 8, 6, 6, and 4 m^2 on the south, west, east, and north walls, respectively. Determine the **total solar heat gain of the house at** $9:00$, $12:00$, and 15:00 solar time in July. Also, determine the total amount of solar heat gain per day for an average day in January.

Analysis The solar heat gain coefficient (SHGC) of the windows is determined from Eq.12-57 to be

 $SHGC = 0.87 \times SC = 0.87 \times 0.82 = 0.7134$

The rate of solar heat gain is determined from

 $Q_{\text{solar gain}} = SHGC \times A_{\text{glazing}} \times \dot{q}_{\text{solar, incident}}$ $= 0.7134 \times A_{\rm glazing} \times \dot{q}_{\rm solar, incident}$

Then the rates of heat gain at the 4 walls at 3 different times in July become

North wall:

 $Q_{\text{solar gain}, 9.00} = 0.7134 \times (4 \text{ m}^2) \times (117 \text{ W/m}^2) = 334 \text{ W}$ $\dot{Q}_{\text{solargain},1200} = 0.7134 \times (\frac{4}{\text{m}^2}) \times (138 \text{ W/m}^2) = 394 \text{ W}$ $\dot{Q}_{\text{solar gain,15:00}} = 0.7134 \times (4 \text{ m}^2) \times (117 \text{ W/m}^2) = 334 \text{ W}$

East wall:

 $\dot{Q}_{\text{solargain},9:00} = 0.7134 \times (\text{6 m}^2) \times (701 \text{ W/m}^2) = 3001 \text{ W}$ $\dot{Q}_{\text{solar gain},1200}$ = 0.7134×(6 m²)×(149 W/m²) = 638 W $\dot{Q}_{\text{solar gain},15:00}$ = 0.7134 × (6 m²) × (114 W/m²) = 488 W

South wall:

 $\dot{Q}_{\text{solargain},9:00} = 0.7134 \times (8 \text{ m}^2) \times (190 \text{ W/m}^2) = 1084 \text{ W}$ $\dot{Q}_{\text{solargain},1200} = 0.7134 \times (8 \text{ m}^2) \times (395 \text{ W/m}^2) = 2254 \text{ W}$ $\dot{Q}_{\text{solar gain},15:00}$ = 0.7134 × (8 m²) × (190 W/m²) = 1084 W

West wall: January: $\mathcal{Q}_{\rm solar \, gain, North}$ $\mathcal{Q}_{\rm solar \, gain, East} =$ $Q_{\text{solar gain, South}}$ $\mathcal{Q}_\mathrm{solar gain, West}$ = Therefore, for an averag $\mathcal{Q}_{\rm solar \, gain \, per \, day}$

 $\dot{Q}_{\text{solar gain},9:00}$ = 0.7134 × (6 m²) × (114 W/m²) = 488 W $\dot{Q}_{\text{solargain},1200} = 0.7134 \times (6 \text{ m}^2) \times (149 \text{ W/m}^2) = 638 \text{ W}$ $\dot{Q}_{\text{solar gain},15:00}$ = 0.7134 × (6 m²) × (701 W/m²) = 3001 W

Similarly, the solar heat gain of the house through all of the windows in January is determined to be

= 0.7134×(4 m²)×(446 Wh/m² ·day) = 1273 Wh/day
\n= 0.7134×(6 m²)×(1863 Wh/m² ·day) = 7974 Wh/day
\n= 0.7134×(8 m²)×(1863 Wh/m² ·day) = 33,655 Wh/day
\n= 0.7134×(6 m²)×(1863 Wh/m² ·day) = 7974 Wh/day
\n
\n
$$
= 1273 + 7974 + 33,655 + 7974 = 58,876 Wh/day \approx 58.9 kWh/day
$$
\n
$$
= 1273 + 7974 + 33,655 + 7974 = 58,876 Wh/day \approx 58.9 kWh/day
$$
\n
$$
\frac{1}{125}
$$
\n

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

18–48 • A typical winter day in Reno, Nevada (39° N latitude), is cold but sunny, and thus the solar heat gain through the windows can be more than the heat loss through them during daytime. Consider a house with double-door-type windows that are double paned with 3-mm-thick glasses and 6.4 mm of air space and have aluminum frames and spacers. The overall heat transfer coefficient for this window is 4.55 W/m^{2. \degree}C. The house is maintained at 22^oC at all times. Determine if the house is losing more or less heat than it is gaining from the sun through an east window on a typical day in January for a 24-h period if the average outdoor temperature is 10°C. Answer: less

18–49 Repeat Prob. 18–48 for a south window.

18–44 A manufacturing facility located at 32° N latitude has a glazing area of 60 m^2 facing west that consists of **doublepane** windows made of clear glass (SHGC $=$ 0.766). To reduce the solar heat gain in summer, a reflective film that will reduce the $SHGC$ to 0.35 is considered. The cooling season consists of June, July, August, and September, and the heating season, October through April. The average daily solar heat fluxes incident on the west side at this latitude are 2.35 , 3.03 , 3.62 , 4.00 , 4.20 , 4.24 , 4.16 , 3.93, 3.48, 2.94, 2.33, and 2.07 kWh(day)m² for January through December, respectively. Also, the unit costs of electricity and natural gas are \$0.15/kWh and \$0.90/therm, respectively. If the coefficient of performance of the cooling system is 3.2 and the efficiency of the furnace is 0.90, determine the net annual cost savings due to installing reflective coating on the windows. Also, determine the simple payback period if the installation cost of reflective film is $$15/m²$. Answers: \$39, 23 years

 $=$ 4.24 $*$ 30 + 4.16 $*$ 31 + 3.93 $*$ 31 Polar, SUMWY $+3.48 + 30$ $= 482$ Kwh $/_{M^2}$. Year $\frac{\psi_{\text{Solar, ultra-1}}}{\psi_{\text{Solar, third}}} = 2.94 * 31 + 2.33 * 30 + 2.07 * 31$ $+2.35*31+3.03*28+3.62*31$ $+4*30 = 615$ $\frac{1}{2}wh/2.9eV$

SUMMLK Winter

CREATED BY ENG AHMAD SABRI: +974 5572 4426

 1 there $29 - 31$ kas her

Goling load decrease = $\varphi * A$ (SHEC - SHEC)
 ψ Ui/Aout Wi/L
Sumer Sumer Film Film $=$ 482 * 60 * (0.766 - 0.35) $= 1203$ Kwk/year Heading load increase = $\varphi^* * A$ (SHEC - SHEC)
Solar glazing without with $=615*60*(0.766-0.35)$ $=$ 15350 $\hbar w h_y = 523 + 14$ Decrease in coaling load * unit Cost of Cop $= 12031 + 0.15 / 2.2$ $= 5645/4$

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/

incrunse in = Heating load x Unit Gost/
heating Gost incruase x Unit Gost/eFFiciency $= 523.7 * 0.8 / 0.9$ $= 524$ \$/year Cost Saviny = Decrease in incrunse in $5648 - 5248$ $405/4e^{-4}$ $\qquad \qquad =$ Implementation Gst = 15 m^2 × 60 m² $= 9005$

Implementation Gst Simple Payback Period Cost Saving $=\frac{9003}{409444}$ = 22.5 years

FOR THE FULL COURSE, CHECK OUT: http://Lnx.org.in/